

DARPA LIFT Challenge


Problem

Legacy vertical lift systems rely on rotors and complex mechanics. They scale poorly in payload, efficiency, and endurance, require significant infrastructure.

Innovation & Technical Approach

- Pressure-driven lift mechanism ~ 25 kHz
- Minimal moving parts, reduced maintenance, low cost operation
- High-temperature capable materials
- Autonomous-first architecture, infrastructure-free operation
- Fuel-flexible energy carriers
- In-flight throttling and restart
- Vectoring/attitude control
- Mass manufacturable pathway

Bond Enterprise Group LLC, USA
Alef LLC, Japan

Hank Bond. Rear Admiral (US Navy Ret.) – Program Manager
William Rieken Sc.D. (USMC, Vet.) – Program Director
Colin Rogers – Alef CEO
Isao Inoue – Business Manager

Solution

A nontraditional vertical lift platform using advanced detonation-based propulsion. Designed for autonomous, infrastructure-free operation with scalable lift geometry. Hydrogen solid-state storage/in-flight H₂ production. Thermal and acoustic management. Safety considerations for operations near people/structures. Weight is less than 55 pounds (24 kilograms). 8 ft 2.4 in (2.5 m) x 8 ft 2.4 in (2.5 m) x 1ft ft (0.30 m). Payload is 300 U.S. pounds (136 kg).

Impact & DARPA Alignment

- Rapid logistics resupply
- Disaster response
- Remote construction
- Government and research missions
- Dual-use scalability

Compared to helicopters and tiltrotors:

- Greater payload efficiency
- Lower complexity
- Higher endurance
- Mission scalability
- Nontraditional lift mechanism
- Radical performance improvement
- Estimated TAM: \$100B+

Jitsuko Nomura - Designer
Sam Thomson – Ph.D. Candidate
Philippe Bouchard – Developer & Mathematician
Tom Takamatsu – FAA Part 107 certified pilot